
EyeContext: Recognition of High-level Contextual Cues
from Human Visual Behaviour

Andreas Bulling
Max Planck Institute for

Informatics
Saarbrücken, Germany

andreas.bulling@acm.org

Christian Weichel
Lancaster University

Lancaster, United Kingdom
c.weichel@lancaster.ac.uk

Hans Gellersen
Lancaster University

Lancaster, United Kingdom
hwg@comp.lancs.ac.uk

ABSTRACT
In this work we present EyeContext, a system to infer high-
level contextual cues from human visual behaviour. We con-
ducted a user study to record eye movements of four partici-
pants over a full day of their daily life, totalling 42.5 hours of
eye movement data. Participants were asked to self-annotate
four non-mutually exclusive cues: social (interacting with
somebody vs. no interaction), cognitive (concentrated work
vs. leisure), physical (physically active vs. not active), and
spatial (inside vs. outside a building). We evaluate a proof-
of-concept EyeContext system that combines encoding of eye
movements into strings and a spectrum string kernel support
vector machine (SVM) classifier. Our results demonstrate the
large information content available in long-term human visual
behaviour and opens up new venues for research on eye-based
behavioural monitoring and life logging.
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INTRODUCTION
Practically everything we do in our lives involves our eyes,
and the way we move our eyes is linked to our goals and tasks.
This makes the eyes a particularly rich source of information:
one that, as we will show in this work, can provide basic cues
on very different aspects of what we do, at any point in time.
Figure 1 illustrates our idea: to provide a system that is able to
produce diverse inferences, about social, cognitive, physical
and spatial aspects, all from eye movement as single source
of information.

Our contribution is two-fold. First, we introduce the EyeCon-
text system for cue inference from eye movement. The sys-
tem takes continuous eye movement as input, and produces a
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Figure 1. The EyeContext system infers contextual cues about different
aspects of what we do, by analysing eye movement patterns over time
(from left to right): social (interacting with somebody vs. no interaction),
cognitive (concentrated work vs. leisure), physical (physically active vs.
not active), and spatial (inside vs. outside a building).

vector of cues as output. The cues are binary descriptors of
daily life situations at any given time. In our proof-of-concept
system, the cues describe whether or not we: socially interact;
concentrate on a mental task; engage in physical activity; are
inside or outside. At the core of our system, we introduce
a novel method for inferring such cues from eye movement.
We encode eye movement as string of symbols that repre-
sent movements in different directions. Patterns of successive
movements thus become represented by words of different
lengths, which we use as basis for our binary classification
problems. The underlying hypothesis is that we find differ-
ent patterns for when we interact or not; are inside or outside;
etc. We use a string kernel support vector machine (SVM) for
classification, inspired by their original use in bioinformatics
for efficient large-scale protein sequence classification [7].

Our second contribution is an evaluation of the system for
which we collected eye movements of four participants over
a typical daily life from morning to evening. Participants
self-annotated the four cues of interest as our ground truth
reference. Using person-dependent training, we assessed the
recognition performance for each of our cues. The results val-
idate the EyeContext system but moreover provide evidence
that eye movement holds contextual information about very
diverse aspects of our daily life. Each individual cue, for ex-
ample whether we are engaging in physical activity, might be
approached with other means (e.g. body motion [2]), while
eye movement can provide cues ranging from social to cogni-
tive to physical and spatial.

THE EYECONTEXT SYSTEM
The EyeContext system takes continuous eye movement sig-
nals as its input. In this work, we used electrooculography
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Figure 2. For classification using a spectrum string kernel SVM, sac-
cades are first detected in the vertical and horizontal EOG signal. Sac-
cades are encoded into characters and combined into a string of eye
movements. The resulting string is split up into non-overlapping words
of fixed length s (here s = 3), each labelled using majority voting.

(EOG) signals but EyeContext is independent of the specific
measurement technique and works as well on eye movement
signals recorded using a video-based eye tracker. The system
processes these signals offline, detects and encodes saccades,
models saccadic behaviour using machine learning, and gen-
erates continuous context labels using this model as its output.

The system removes noise from the recorded eye movement
signals using a median filter as well as baseline drift using
a wavelet packets approach. The system then detects and
removes blinks using the Continuous Wavelet Transform –
Blink Detection algorithm and saccades using the Continu-
ous Wavelet Transform – Saccade Detection (CWT-SD) algo-
rithm [4]. Briefly, CWT-SD detects saccades by thresholding
on the continuous 1-D wavelet coefficient vector computed
from the processed eye movement signals.

Detected saccades are encoded into eye movements using an
alphabet A of eight distinct characters based on the saccades’
direction. For example, a saccade to the left is encoded as “L”
while a saccade to the diagonal right is encoded as “B”. These
characters are merged into a single string that represents the
sequence of consecutive eye movements for each participant.
For classification, EyeContext splits this string into words Si

of fixed length s using majority voting for words that cover
several ground truth labels (see Figure 2). These words are
used as input to a spectrum string kernel SVM classifier.

A spectrum string kernel K(Si, Sj) of power k is defined as

K(Si, Sj) = 〈Φ(Si, k),Φ(Sj , k)〉

Φ(Si, k) =
[
φa1

(Si) . . . φa|A|k
(Si)

]T
Intuitively, φa(Si) counts the position-independent occur-
rences of all contiguous eye movement patterns a ∈ Ak of
length k (also called k-mers or k-grams) contained in Si. The
set of all k-mers is also called the k-spectrum of a string with
each k-mer representing one dimension of the feature space
(for details see [7]). The two main parameters of a spectrum
string kernel are the word length s, i.e. the length of each in-
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Figure 3. Experimental equipment used for data collection consisting of
the Mobi (a), five EOG electrodes (b), a laptop for data recording (c), as
well as a smartphone for self-annotation (d).

put string to the SVM, and the power k of the kernel, i.e. the
length of the eye movement patterns.

STUDY
We designed a user study to answer the fundamental question
of whether analysing human visual behaviour can be used to
automatically recognise four high-level contextual cues. The
example cues that we explore in this work are:

1. Social cues: Social (face to face) interactions with another
person versus no interaction.

2. Cognitive cues: Concentrated work, such as reading, ver-
sus leisure, which includes all forms of passive consump-
tion (e.g. watching a video) or non-goal driven activities
(e.g. a night out with friends).

3. Physical cues: Physically active, such as walking, versus
resting, such as standing or sitting.

4. Spatial cues: Being inside or outside, e.g. a building, a car,
or a train.

Apparatus
We used EOG to be able to record continuously for more than
12 hours. For EOG data recording we used a Mobi system by
Twente Medical Systems International. The Mobi was worn
by the participants and transmitted data sampled at 2 kHz over
Bluetooth to a laptop carried in a shoulder bag. EOG signals
were picked up using five Ag/AgCl wet electrodes. Pairs of
electrodes were attached to the outer edge of the left and right
eye, above the right eyebrow and below the right eye, and
an additional reference electrode was placed on the forehead.
Ground truth annotation was performed using a custom soft-
ware running on an Android smartphone (see Figure 3).

Procedure
For data collection we recruited four full-time researchers
from the lab. Their typical work day is characterised by lots of
work with only little leisure. Specifically, their everyday life
includes commuting to the university, working concentrated



P1 P2 P3 P4 Total

concentrated 454 341 268 374 1,437
leisure 268 286 354 210 1,118

inside 698 600 525 521 2,344
outside 24 28 97 63 211

social interaction 116 215 238 299 868
no interaction 606 413 384 285 1,688

physically active 114 76 278 99 566
resting 608 551 345 485 1,989

Table 1. Overview of the recorded dataset. The table shows the amount
of data labelled for each contextual cue in minutes.

at the desk, interacting with colleagues throughout the day,
occasionally leaving the building, e.g. for lunch, and commut-
ing back home in the evening. We asked them to self-annotate
such non-mutually exclusive transitions as accurately as pos-
sible, while still retaining their daily routine. In an initial
physical meeting in the lab participants were introduced to the
recording system and shown how to attach the electrodes and
start the recording. Participants were instructed to start the
recording at home in the morning and stop it in the evening.

Data Analysis
All parameters of the signal processing and saccade detection
algorithms were fixed to values common to all participants.
We considered four individual binary classification problems,
one for each contextual cue. As class distributions were con-
siderably skewed (see Table 1), similar to [1], we used a
discrete HMM model to oversample the smaller class until
both classes were of the same size. The predictions returned
by the string kernel SVM were compared to the annotated
ground truth using a person-dependent evaluation scheme:
the dataset for each participant was split using 70% for train-
ing and 30% for testing. Classification was only performed
on the test set. During classification the values of k and s
were optimised with respect to recognition accuracy. This
evaluation was run five times (5-fold cross-validation) and the
following performance measures averaged. Precision was cal-
culated as TP

TP+FP , recall (true positive rate) as TP
TP+FN , and

false positive rate (FPR) as FP
FP+TN , where TP , FP , TN

and FN represent true positive, false positive, true negative
and false negative counts, respectively.

RESULTS
We were able to record a dataset of more than 42.5 hours
of eye movement data (see Table 1). The dataset comprises
nearly 24 hours of concentrated work (18.5 hours of leisure),
39 hours were spent inside (3.5 hours outside), 14.5 hours of
social interactions (28 hours of no interaction), as well as 9.3
hours of physically active periods (33.2 hours of resting).

Figure 4 plots the recognition performance for each contex-
tual cue and participant, as well as the means over all par-
ticipants. The best mean result is for recognising social in-
teractions for which the system performed well for all par-
ticipants (85.3% precision, 98.0% recall on average). The

P1 P2 P3 P4 mean
precision 81.4% 75.5% 66.3% 84.0% 76.8%
recall 88.6% 87.4% 79.8% 86.0% 85.5%
FPR 19.8% 27.7% 38.4% 15.8% 25.4%

Table 2. Precision, recall and false positive rate (FPR) for each partici-
pant averaged over all four contextual cue as well as the mean over all
participants. Best results are indicated in bold; worst results in italic.

worst result is for recognising physical activities (75.3% pre-
cision, 74.4% recall) with a notably lower recall than for the
cognitive cue (73.2% precision, 83.1% recall) and the spatial
cue (74.0% precision, 85.0% recall). These results show that
while the system has similar performance in correctly recog-
nising actual activity, cognitive and spatial cue instances, it
has a harder time in spotting all activity instances. Figure 4
also indicates tendencies of particular participants to perform
consistently worse than others. Table 2 confirms this finding.
The highest performance is achieved for P4 (84.0% precision,
86.0% recall, 15.8% FPR), while the worst result is for P3
(66.3% precision, 79.8% recall, 38.4% FPR). On closer in-
spection of the raw EOG data, it turned out that the signal
quality for P3 was much worse compared to the other partic-
ipants and saccades could not be robustly detected. Dry skin
or poor electrode placement are the most likely culprits.

DISCUSSION
Our EyeContext system demonstrates a novel way in which
eye movements can be embraced for human-computer inter-
action. At the human-computer interface, eye movements
were previously studied mostly for explicit control or specific
diagnostics. Recent related work demonstrated automated
recognition of particular activities, such as reading and writ-
ing, from eye movements [3, 4]. The current work differs
fundamentally, as it demonstrates the feasibility of inferring
contextual cues that are not limited to particular activities but
broadly descriptive of our situation at any point in time.

Previous works on eye-based activity recognition used a com-
putationally complex feature-based recognition approach. In
contrast, the proof-of-concept system described in this work
focuses on eye movement patterns that are first encoded and
then classified using a string spectrum kernel method. This ap-
proach is computationally simple – as it does not require to ex-
tract a large number of low-level eye movement features – and
it also implements the assumption that high-level contextual
cues are characterised by differences in repetitive visual be-
haviours. It will be interesting to see how this approach com-
pares to other methods geared to processing large amounts of
sequences of symbols, such as networks of motifs [9].

Limited recording time and bulky equipment still prevent cur-
rent video-based eye trackers from being used for long-term
recordings in daily life. We thus opted to use EOG, which
is light-weight and can be implemented as a low-power wear-
able system. It is important to note that neither the eye move-
ment encoding and recognition approach, nor EyeContext in
general are limited to the specific measurement technique
used in this work. The system can also be used with other
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Figure 4. Overall best performance in terms of precision and recall for each cue and participant. Black stars mark the mean performance.

portable and ambient eye trackers and we strongly believe
that even totally unobtrusive tracking will become feasible.

As any dataset, the one we presented here has limitations in
terms of the number of days and participants that we recorded.
Although larger variability is always desirable, it has to be
stressed that there was a high degree of variability of activities
within each class. For example, every instance of a conversa-
tion recorded by a user will have varied considerably, as it oc-
curs in different daily life situations. The class distributions
within the dataset were considerably skewed (unbalanced) for
three of the four contextual cues (see Table 1). It is deliberate
that we did not constrain the participants in any way (e.g. by
scripting their entire working day) but opted for a data collec-
tion that is as imbalanced as the real world is.

The contextual cues investigated in this work are only exem-
plary but potentially useful for a number of applications. For
example, logging one’s life in digital form has a long held fas-
cination and research has shown that recordings in everyday
life can support memory, sharing, and behaviour analysis [8,
10, 5]. While capture technology is well explored [6], auto-
matic annotation and filtering of long-term life logging data
is still a significant challenge. Recognition of when a person
is physically active or indoor/outdoor is promising for filter-
ing because it is less narrow than annotation of specific activ-
ities and useful for breaking down the search space. Recog-
nition of social cues may allow caregivers to automatically
measure how socially active elderly or people with autism
spectrum disorders are. Information on cognitive load may
provide valuable insights into cognitive abilities relevant for
medical or behaviour monitoring. EyeContext, however, is
not restricted to these cues or the specific experimental set-
tings investigated here but can be extended to other cues and
everyday situations by using additional binary classifiers.

CONCLUSION
In this work we described EyeContext, a system that in-
fers high-level contextual cues about different aspects of our
daily life by analysing visual behaviour over time. Based
on a proof-of-concept implementation and four long-term eye
movement datasets we showed that we could robustly recog-
nise four example binary cues. While previous work demon-
strated the rich information content available in low-level eye
movement characteristics, these results show that additional
and equally valuable information is contained in the general
eye movement patterns that we perform throughout a day.
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