Enclosed: A Component-Centric Interface for
Designing Prototype Enclosures

Christian Weichel
Lancaster University
c.weichel @lancaster.ac.uk

Manfred Lau
Lancaster University
m.lau@lancaster.ac.uk

Hans Gellersen
Lancaster University
hwg@comp.lancs.ac.uk

;ﬁ =T
L

4
% g’
y e

idea —

component selection —

software development —

enclosure design - physical prototype

Figure 1. The design process for a device prototype: starting from an idea, hardware components are selected (and with them a prototyping framework
- e.g. .NET Gadgeteer, Arduino or generic components). Once the components are connected together, software can be written for the device (the
Gadgeteer platform already provides this). This paper focuses on a tool for virtually designing an enclosure, which can then be fabricated into a

physical prototype.

ABSTRACT

This paper explores the problem of designing enclosures (or
physical cases) that are needed for prototyping electronic de-
vices. We present a novel interface that uses electronic com-
ponents as handles for designing the 3D shape of the enclo-
sure. We use the .NET Gadgeteer platform as a case study of
this problem, and implemented a proof-of-concept system for
designing enclosures for Gadgeteer components. We show
examples of enclosures designed and fabricated with our sys-
tem.

Author Keywords
rapid prototyping, personal fabrication, 3D modeling, user
interfaces, user-generated design

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION

The process of prototyping a new device not only includes
connecting its components and writing its software, but also
includes designing and building an enclosure for the device.
Designing an enclosure is an important step, as the aesthetics
and haptics of the device are determined by how it is shaped
and what material is used. Traditional computer-aided design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. TEI 2013, Feb 10-13, 2013, Barcelona, Spain.
Copyright 2012 ACM 978-1-4503-1898-3/13/02....$15.00.

(CAD) tools are complex and require extensive training. De-
signing an enclosure with such tools is cumbersome, as each
part of the enclosure has to be designed individually and so
that it fits with the others, including the joints/screws con-
necting the panels.

This paper explores the problem of designing and fabricating
enclosures for electronic devices, and we build a tool to ease
the prototype process of a physical enclosure. Our interface is
novel in that it focuses on using the electronic components as
handles for designing the shape of the enclosure, in contrast
to typical CAD modeling tools that manipulate edges and ver-
tices to modify a 3D shape. Creating a design from scratch
can also be a daunting task. By creating an enclosure using
the information about the components that need to be placed,
we free the user from this “blank canvas syndrome”. The
design can then be iteratively refined using the components
as handles. By focusing on laser cutting as the production
technology, we constrain the possible operations so that the
outcome is always realizable on a laser cutter, and further re-
duce the interface complexity. The user does not have to care
about the laser cutter requirements, specific joint techniques,
or the component requirements for holes/mounting points.

We use the existing .NET Gadgeteer platform [11] as a case
study. Our implementation is a proof-of-concept system that
extends Gadgeteer to fabricate enclosures with a laser cutter.
Gadgeteer provides a rapid platform for designing, prototyp-
ing and fabricating electronic devices with a set of smaller
electronic components. Fully functional devices can be pro-
totyped, built, and programmed within a number of hours.
However, the design of the physical enclosure can be time-
consuming as modeling a 3D shape is a difficult problem.
Creating a 3D model that fits with existing electronic com-
ponents is even more difficult. The current approach utlizes a

Figure 2. Three alarm clocks, all of which share a similar bill of com-
ponents but exhibit different shapes and behavior. On the left side is
the brick prototype which represents the simplest alarm clock. In the
center is the pool enclosure which has the buttons on the angled side
panels. The third prototype on the right-hand side, bears deliberate re-
semblance with an hourglas and can be snoozed by turning it arround.

proprietary 3D modeling software, and the process typically
requires a few hours. On the other hand, our system can be
used to design an enclosure in the order of minutes.

Related Work

With the emergence of personal fabrication [6, 8], easy-to-use
tools for designing customised objects are becoming com-
mon. Previous work that is closely related to our work in-
cludes the design and fabrication of storage boxes (for stor-
ing objects inside them) [2, 9]. Sketch-based interfaces are
often used for creating 3D shapes for graphics and fabrica-
tion purposes [7, 5, 10]. Other tools used include TinkerCAD
and SketchUp [3, 1], both of which lack specific production
technique support. Our work focuses on an easy-to-use inter-
face for creating enclosures using a laser cutter, that fit with
existing electronic components.

USER EXPERIENCE AND INTERFACE

We describe the user experience by explaining the design pro-
cess (Figure 1): from having an initial idea to fabricating a
physical prototype. Suppose we wanted to create prototypes
for three alarm clock implementations (Figure 2). The first
one: brick, is a conventional design using a display and two
buttons at the top with which the user can set the time and
snooze the alarm. Pool works in a similar way, but has the
two buttons on angled panels on the side, possibly making
the alarm clock more economic. Our third alarm clock proto-
type bears deliberate ressemblance with an hourglass. Time
is set using a button on either side and the clock is snoozed
by turning the hourglass around.

Connecting components and writing software

The design process starts with an idea of what the user wants
to build. Based on that understanding, the user selects a set
of components. For the alarm clocks, we select displays, but-
tons, LEDs, batteries, accelerometers and a main board. Gad-
geteer [11] provides a visual hardware designer for connect-
ing the components together, and a development environment
for writing the software to control the components.

Figure 3. Left: The initial 3D shape is a box, and one can translate com-
ponents to resize enclosure panels. Middle: Users can rotate components
to rotate/split/join enclosure panels. Right: Our pool alarm clock design.

Starting the enclosure editor

Once the hardware components have been connected and the
software is written, we start designing the enclosure. The
editor receives the bill of components from the Gadgeteer
development environment and starts by presenting a list of
the components. Components can either be internal or exter-
nal. Typical examples of internal components include bat-
teries and WiFi/Bluetooth modules. External components
serve their main purpose by explicitly interacting with the
user. Displays, buttons, LEDs, wired connections (for ether-
net and power), and actuators are examples of such modules.
Confirming the list of components leads to our enclosure de-
sign tool (Figure 1 enclosure design). We are presented with
four views of the enclosure (top/bottom, front/back, left/right,
ISO), an action indicator bar at the bottom (for making selec-
tions on how to translate and rotate components on the asso-
ciated panels), and the component palette on the right. The
editor provides a box as the initial shape which the user then
refines by translating and rotating components on the panels
(or faces) of the enclosure (Figure 3).

Example: buzzing inside or outside

For our alarm clock examples, we have at least one compo-
nent whichs role is not clear: the buzzer is an internal com-
ponent in that it is not operated by the user or would require
user visibility. However, a buzzer is likely to be louder when
the sound produced by it doesn’t have to penetrate enclosing
walls (if the buzzer is external). The user can choose whether
a buzzer is internal or external.

Translating components to resize enclosure panels
Components can be added to any face of the enclosure by
dragging them from the palette to the desired face. If there is
no space on the target face, or the component is too big to fit
on the face, the enclosure will resize automatically to provide
space for the new component. Once placed on a panel, com-
ponents are represented by their 3D model provided by the
Gadgeteer platform (Figure 4 shows an example 3D model).
Moving the component on the panel not only translates the
component, but also resizes the panel. There are three possi-
bilities depending on the currently active action:

e Translate action: the component is translated on the plane
of the panel only and never away from it. The enclosure
does not shrink when the component is moved away from
the panel but the component “snaps” back to it.

o Free Translate action: the component can be moved away
from the plane of the panel, causing the enclosure to resize

Figure 4. (Left) The Gadgeteer T35 display component manufactured
by GHI electronics. (Right) The 3D model (in blue) as provided by the
Gadgeteer platform, and the additional annotations (in red, mounting
holes/cut-outs and bounding box) to use it with our editor.

(grow and shrink) to again enclose the component.

e Shrink action: shrinks the enclosure when the component
is moved towards the inside of a panel.

The user can translate the components in a continuous mode
(default) or discrete mode (snap to nearest Smm). Compo-
nents can also be removed from a panel and placed back in
the palette.

Example: choosing the panels

The brick example has components placed on two different
panels: the display on the front panel and two buttons on the
top one. Such a configuration is quickly created by dragging
the components from the palette to their desired place, resiz-
ing the panel in the process.

Rotating components to rotate/split/join enclosure panels
Clicking on and rotating a component automatically rotates
the panel that the component is connected to (Figure 3 mid-
dle). The edge around which the panel is rotated is deter-
mined by which edge intersects the selected component’s ma-
nipulation range (a fixed margin around the component). The
edge of rotation is chosen by checking which horizontal edge
intersects with the manipulation range. If multiple horizon-
tal edges intersect in the manipulation range, the lowest edge
(the edge with the smallest y-coordinate) is chosen. We limit
rotation to horizontal edges, as practice has shown that rota-
tion around vertical edges is seldom needed and often leads
to enclosures unproducible with laser-cutting. If no horizon-
tal edge intersects with the manipulation range, a new edge is
created at the lower horizontal end of the manipulation range,
and splitting the existing panel into two panels. When the
angle between two panels is reduced to a value less than 2.5
degrees, the editor joins the two panels to become one and
removes the edge that previously separated both. The user
can rotate the components in a continuous mode (default) or
discrete mode (snap to nearest 10°).

Example: slanting and the hourglass

For our hourglass example split the panels and rotated them to
achieve the desired shape by placing a component on the bot-
tom/side panels. We repeated the split/rotate step four times
for each side, requiring a total of 8 steps to create the shape.
The number of steps needed to achieve the same (including
joints) in a traditional CAD system is about 10 times higher.

IMPLEMENTATION

We represent an enclosure as a graph loosely resembling its
bill of material. An enclosure consists of a set of panels,
components, and the connections between panels and compo-
nents. Hence we represent an enclosure as a graph with pan-
els and components represented by vertices and the edges rep-
resenting the connections between the entities. A component
consists its 3D model, bounding box and a set of holes rep-
resenting the outlets a component requires on the enclosure.
These holes are modeled as circles and rectangles placed on
a face of the component’s bounding box, with respect to the
center of that face. We enumerate the bounding box faces to
uniquely identify to which BB face a hole belongs to. Our
model allows panel to component, panel to panel and compo-
nent to component connections. A panel to component con-
nection includes the position of the component (oriented at
the center of the component’s bounding box) on the panel.

Translating component on panel

To move a component on a panel, we first determine if a panel
edge intersects with the component’s padded bounding box
(BB + padding). If such an intersection is found and the com-
ponent is moved towards the outside of the panel, we move
the other panel adjacent to the intersecting edge, so that the
edge no longer intersects with the padded bounding box. In
case the component is moved towards the inside of the panel
and shrinking is allowed, we move the adjacent panel by the
component’s displacement vector, hence shrinking the enclo-
sure. After all these operations, the component position is
updated by storing the new position in the respective panel to
component connection.

Rotating component on panel

Rotating a component on a panel can cause the panel to be
subdivided. A subdivision edge must satisfy these criterion:
(i) it must intersect with exactly two existing panel edges (can
be violated by convexity); (ii) it must be parallel to an existing
edge, so that the outcome of the subdivision is still fabricat-
able; and (iii) it must not intersect with a component on the
panel. We always use the edge parallel to the horizontal panel
axis going through the lowest point(s) of the component’s ma-
nipulation range. To subdivide the panel, we create two pan-
els to substitute the existing one. First we find the two edges
intersected by the subdivision edge', which also determines
which vertices belong to which panel. After creating the new
panels, the connections of the old panel are mapped to the
new panels. Each old panel to panel connection is replaced
with at least one, and at maximum two new connections. All
previous panel to component connections are mapped to ei-
ther of the two new panels: we use a ray-casting algorithm to
determine in which panel the component center resides.

FABRICATION AND RESULTS

Outline generation
The outline generation algorithm is an essential part of the
system and serves the purposes of generating outlines to be

'If there were more than two intersecting edges, criteria (i) would
be violated.

(@ (b) ()

Figure 5. Three different joints at the same angle. (a) was produced
using our sin rule. (b) was produced with the naive approach resulting
in a too conservative size reduction. (c) is a possible way of “joining”
panels that exploits the flexibility of the production material.

cut using a laser cutter or CNC router and checking for cer-
tain production specific issues in the model. Outlines are
generated for each panel independently of the other panels.
First, each panel edge is assigned a role, based on its role in
the enclosure graph: if the current panel A assumes a source
role in the connection to its adjacent panel B, the edge is
marked male and female otherwise. Second, male edges are
shrunk to account for material thickness. The amount an edge
is reduced depends on the angle of inclination with the adja-
cent panel. We found that reducing an edge by m sin (AZB),
where m is the material thickness and A/ B is the angle of
inclinination between the two panels, produces aesthetically
pleasing results (Figure 5a,b). Third, we add joints to con-
nect the panels. This system is capable of adding three types
of joints, depending on the available space: pure finger joints,
screw joints and a combination of the two. Finger joints are
always 10mm wide, and the largest odd number of finger
joints that fits into the space is added to each edge. If an
edge has at least three or more finger joints, the middle joint
becomes a screw joint. If an edge has only one finger joint
and there is enough space, the finger joint is replaced with a
finger/screw joint combination (which is 15mm wide to ac-
count for the screw diameter). Joint gender is based on the
role determination in step one.

Placing the outlines on sheet material

The 2D packing problem is a well studied one with many dif-
ferent problem instances. We consider placing the outlines
on the sheet material as an instance of the strip packing prob-
lem: place a set of rectangles of different size on a strip of
fixed width but infinite height, so that the total height is min-
imized. To compute the layout, we use the First-Fit Decreas-
ing Height packing algorithm [4] as it has a low computa-
tional complexity O(n - logn). As the panels tend to be of
similiar size, the algorithm produces good results.

Results of fabricated enclosures

Figure 2 shows the three physical enclosures that we built.
All three enclosures were cut out of 600x300x6mm plywood
sheets, and assembled using M3 screws for mounting the
components and M4 screws for all screw joints.

DISCUSSION, LIMITATIONS, AND FUTURE WORK

The joint creation process has limitations. For example, we
might find that after reducing a panel edge to create space for
a screw, there is not enough space left to mount a component

placed on that panel. More robust methods for validating the
joint creation is left for future work.

Implementing support for more advanced production tech-
niques can make them available to a wider user group. A good
example is the “kerf bending” technique (Figure 5c) which is
hard to implement properly using drawing and CAD tools,
but could be integrated in tools such as the one presented in
this work.

We have not performed formal user evaluations of our system,
but we have provided a proof-of-concept implementation of
the design process of physical enclosures. For future work,
we intend to perform user studies of our tool to make further
improvements.

We focus on the static shape of enclosures, but realize that
some enclosures also contain dynamic parts. In future work,
we intent to support designing mechanical aspects as well.

In this paper, we used the .NET Gadgeteer platform as a case
study. However, the idea of designing enclosures using elec-
tronic components is applicable to a broader array of pro-
totyping frameworks. Other components such as Arduino,
Sparkfun components or more generic micro-controller plat-
forms could be used as well, provided their 3D models are
available.

CONCLUSION

In this paper we presented a component centric interface for
designing prototype enclosures. We use the components as
handles for manipulating the enclosure shape. Our system
targets laser cutting as production technique and handles pro-
duction specific details, such as joint generation, automati-
cally. We presented a proof-of-concept implementation of
the system, including three prototypes that were designed and
built with it.

ACKNOWLEDGEMENTS
This work was supported by the EU Marie Curie Network
iCareNet under grant number 264738.

REFERENCES

1. Google sketchup. http://www.sketchup.com/.

2. Magic Box. http://magic-box.org/.

3. Tinkercad. https://tinkercad.com/.

4. Coffman, E. G., Garey, M. R., Johnson, D. S., and Tarjan, R. E.
Performance bounds for level-oriented two-dimensional packing
algorithms. SIAM Journal on Computing 9, 4 (1980), 808—826.

. FRONT. Sketch furniture, 2006. www.designfront.org.

6. Gross, M. Now more than ever: computational thinking and a science
of design. Japan Society for the Science of Design 16, 2 (2007), 50-54.

7. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: a sketching interface
for 3d freeform design. In SSIGGRAPH (1999), 409-416.

8. Landay, J. Design tools for the rest of us. Communications of the ACM
52,12 (2009), 80.

9. Lau, M., Saul, G., Mitani, J., and Igarashi, T. Modeling-in-context:
User design of complementary objects with a single photo. In ACM
Sketch-Based Interfaces and Modeling (2010), 17-24.

10. Saul, G., Lau, M., Mitani, J., and Igarashi, T. SketchChair: An
all-in-one chair design system for end-users. TEI (2011), 73-80.

11. Villar, N., Scott, J., Hodges, S., Hammil, K., and Miller, C. .NET
Gadgeteer: A platform for custom devices. In Pervasive (2012),
216-233.

W

http://www.sketchup.com/
http://magic-box.org/
https://tinkercad.com/

	Introduction
	Related Work

	User experience and interface
	Connecting components and writing software
	Starting the enclosure editor
	Example: buzzing inside or outside

	Translating components to resize enclosure panels
	Example: choosing the panels

	Rotating components to rotate/split/join enclosure panels
	Example: slanting and the hourglass

	Implementation
	Translating component on panel
	Rotating component on panel

	Fabrication and Results
	Outline generation
	Placing the outlines on sheet material
	Results of fabricated enclosures

	Discussion, Limitations, and Future Work
	Conclusion
	Acknowledgements
	REFERENCES

