Work-in-Progress

CHI 2015, Crossings, Seoul, Korea

Shape Display Shader Language
(SDSL): A New Programming Model
for Shape Changing Displays

Christian Weichel
Lancaster University, UK
c.weichel@lancaster.ac.uk

John Hardy
Lancaster University, UK
john@highwire-dtc.com

Jason Alexander
Lancaster University, UK
j-alexander@lancaster.ac.uk

Figure 1: The SDSL IDE. (a) The arrangement, actuation and
pixel shader editors. (b) The realtime program inspector. (c)
Program running in the simulator. (d) Uniform control panel.

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

CHI'15 Extended Abstracts, Apr 18-23, 2015, Seoul, Republic of Korea
ACM 978-1-4503-3146-3/15/04.
http://dx.doi.org/10.1145/2702613.2732727

Abstract

Shape-changing displays’ dynamic physical affordances
have inspired a range of novel hardware designs to support
new types of interaction. Despite rapid technological
progress, the community lacks a common programming
model for developing applications for these visually and
physically-dynamic display surfaces. This results in
complex, hardware-specific, custom-code that requires
significant development effort and prevents researchers
from easily building on and sharing their applications
across hardware platforms. As a first attempt to address
these issues we introduce SDSL, a Shape-Display Shader
Language for easily programming shape-changing displays
in a hardware-independent manner. We introduce the
(graphics-derived) pipeline model of SDSL, an
open-source implementation that includes a compiler,
runtime, IDE, debugger, and simulator, and show
demonstrator applications running on two shape-changing
hardware setups.

Author Keywords
Shape-Changing Displays; Shader Programming

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation (e.g.
HCI)]: Miscellaneous

1121

Work-in-Progress

Figure 2: (left) wave animation
running in the simulator and on
Tilt Display, (right) the same
wave animation running on
different hardware.

Introduction

Recent interest in shape-changing displays—uvisual output
surfaces that can physically deform—has intensified, with
many point-designs showcasing a variety of features,
technologies, and applications [1, 5, 10]. To control the
display and actuation, each deployment requires a custom,
hardware-dependent software architecture. This software
requires significant programming effort and is ‘unsharable’
across devices. The community lacks a common
programming model, and vocabulary, for easily creating
hardware-independent, portable applications for
shape-changing displays.

As a first approach to overcome these issues, we introduce
the Shape Display Shader Language (SDSL): a
programmable shader pipeline inspired by modern graphics
pipelines [3], for developing content for shape-changing
displays (motion design). SDSL is a platform-agnostic,
hardware-independent pipeline that unifies content
development by providing a common programming
vocabulary and environment. The SDSL pipeline supports
scalable, flexible, and more controllable applications
compared to custom-built, hardware-specific solutions.
Using mature shader concepts, SDSL allows simple code
to achieve complex display, actuation, and interaction
scenarios. We provide an initial SDSL implementation for
z-actuated displays. SDSL supports our vision of a
community who can easily design and share shape-
changing applications across different hardware platforms.

This paper contributes: 1) The concept of applying
graphics shaders to shape-changing displays; 2) A
programming language and IDE, including a simulator and
debugger, that support the SDSL pipeline; 3) A
demonstration of the hardware agnostic runtime and
SDSL flexibility using two different shape-changing

CHI 2015, Crossings, Seoul, Korea

displays; 4) An open-source implementation of the SDSL
compiler, runtime, and IDE.

Related Work

Shape-changing displays encompass a diverse range of
physically-dynamic visual output surfaces. These devices
can be described by their topological form,
transformation, and interaction [8]; their materiality or
surface properties [2]; or by their geometric shape [10].
SDSL represents shape-change using geometric modeling
of surface features.

SDSL provides programming support for single-coordinate
space shape-change. This allows it support many of the
prototypes present in the literature: z-actuation [5, 7],
tilting [1], and bending [10]. Due to the adaptable nature
of the pipeline, material properties such as stiffness
control [4] could also be included.

In modern computer graphics, programmable shader
pipelines [3] enable a high degree of control over the
rendering process. Shaders are written in
hardware-independent languages (e.g., GLSL [9] or

HLSL [6]) that allow developers to focus on content
presentation. Existing graphics shader pipelines can be
re-purposed for shape-changing displays [5] to leverage the
parallelism of graphics hardware. However, this requires a
lot of custom code and is hardware specific. Previous
work has also applied shader pipelines to non-graphic
domains. OpenFab [11] is a programmable pipeline for
multi-material 3D printing. Much like SDSL, OpenFab
defines it’s own shader types and programming language.

SDSL

Using a shader-based programming model for
shape-changing displays eases development, and makes

1122

Work-in-Progress

[
]
=5
T av
552
IoZS

— 3
— 3
23 |:
cc >
6.0
o

£
5o
Ya
*xg8
an

actuation

N

wn
Sw |2
335 s
o B|EE =
= Sq|rs8
BEZ|IS0 | " 5T
> QR 5 | —< =)
r-a-E- R T
1 a8 1 <N
= d =2 !
2 T o 1
2loc o >
“lne [
N~— ! E
= 1
gg | &
— E2 1
£ |o=|) €
& 1
Q QY | Q
L £ £ 9 \y E
50 <a [T
Téuco’;_‘ ——pgbw
[T
gL s
< a W
— ba)
[2)

Figure 3: The SDSL pipeline,
including arrangement shader,
actuation shader, and pixel
shader; all encapsulated by a
hardware driver.

code scalable and portable across devices. The modular
and flexible pipeline (Figure 3) is programmed in a custom
shader language (similar to the well known GLSL or HLSL
languages). We provide a linear-actuation focused SDSL,
including a runtime environment and IDE with an
interactive inspector and display simulator.

Pipeline

The SDSL pipeline (Figure 3) abstracts actuator
placement, spatial configuration, and visual configuration.
The pipeline consists of a series of programmable stages,
each addressing a specific aspect of content generation. It
adopts a “frame”-based approach: as new frames of input
arrive (for either visual or physical output, or both), the
pipeline executes the programmable stages and generates
appropriate output.

A hardware driver is responsible for describing the
hardware configuration to the pipeline: the actuator
arrangement and its visual capabilities. The actuator
arrangement is then processed by the arrangement shader
and forwarded to the actuation shader which computes
how the display will change it's shape. Finally, the pixel
shader computes the visual output of the display. All
shaders can have uniforms (custom parameters). One
particularly important type of uniform is the sampler that
provides access to external data sources in the form of an
array of 1/2/3/4-dimensional vectors (e.g., a Kinect depth
stream or touch input).

Hardware Driver

The driver encapsulates all hardware-specific details,
making SDSL code portable across different
shape-displays. It is implemented once per display and
supports three main tasks:

CHI 2015, Crossings, Seoul, Korea

1. Provide the device profile, specifying the visual
resolution per actuator and optionally the maximal
and minimal update speed, and the actuators' range
of motion. These values configure the pipeline
(number of pixel shader instances per actuator) and
validate if the program can be correctly executed on
the given display.

2. Provide the actuator arrangement. The physical
arrangement of actuators can be dynamic; the
hardware driver captures the instantaneous
arrangement and provides it as input to the
arrangement shader.

3. Implement the computed height and color by
appropriately driving the actuators and visual
display.

If the hardware supports features beyond linear actuation,
the driver can supply additional information via custom
uniforms. For example, if the actuators can sense their
rotation, this data could be made available to SDSL
programs as a 1D texture sampler (linear float array).

Applications and Runtime

SDSL programs seldom stand alone, but generally are part
of a bigger application (much like graphics shaders).
Applications can use the SDSL runtime to execute SDSL
programs. The runtime supports real-time uniform
configuration, so that applications can provide data to the
pipeline. For example, to support interactivity, the
encapsulating application can use the runtime to supply
user input to a shader program.

Arrangement Shader
The optional arrangement shader transforms the physical
actuator coordinates and normals into a more convenient

1123

Work-in-Progress

Figure 4: Different geometry
shader applications. (left)
mapping a physical actuator
arrangement to the pixel space of
a camera image. (right)
Unwrapping a spherical actuator
arrangement to a flat texture
space.

coordinate space e.g., a low-density actuator grid defined
in millimeters to a depth camera image defined in pixels
(Figure 4, top). This shader can also be used to support
non-planar actuator arrangements, e.g. unwrapping a
sphere onto a planar texture (Figure 4, bottom).

Actuation Shader

This stage computes the physical state of each actuator.
The computation is based on the actuator’s location,
normal vector, and custom application parameters. These
shaders typically use external data sources through
samplers. Our implementation currently assumes a linear
actuation model (see Discussion on how this can be
extended) that outputs a single value: the target height
for each actuator.

Pixel Shader

The pixel shader computes visual output on a
per-actuator basis. The displayed colors can be based on
predefined imagery, mathematical models, a sampler or
computed in real-time.

The visual resolution of shape-changing displays is often
higher than their physical resolution (e.g. high-resolution
displays attached to actuators [1], or projection on the
actuated surface [5]). Pixel shaders support this resolution
mismatch. For example, if a projection overlay is used, the
hardware driver would specify that each actuator has a
projected surface of N x M px. The pixel shader computes
an RGBA (red, green, blue, alpha) color for each pixel
within an actuator, based on the actuator’'s coordinates in
the overall arrangement and the pixels coordinates within
the actuator. This enables developers to apply complex
sub-actuator detail across the entire display.

CHI 2015, Crossings, Seoul, Korea

Language

SDSL is similar to existing shader languages [6, 9]. It
follows the well known C-style syntax (including custom
functions and block-scoping), and supports many
“intrinsic” instructions familiar to graphics programmers.
We support native vector and matrix arithmetic, as well as
uniform declarations and samplers (externally provided
arrays of 1/2/3/4-dimensional vectors). The language is
type-safe and supports basic polymorphic functions.

SDSL code compiles to an intermediary representation,
called Shape-Display Shader Execution code (SDSE).
SDSE is completely linked, has all references resolved, and
types checked. Using SDSE we can introduce
compile-time optimizations and static program analysis.
The latter could be used to check if a program can be
displayed correctly given a certain device profile.

Integrated Development Environment (IDE)

To ease the development of shape-changing applications
we provide a web-based Integrated Development
Environment (IDE) for SDSL (Figure 1). This IDE is
structured around an in-browser 3D simulation of the
shape-changing display, enabling developers to test their
programs without running the risk of damaging
experimental hardware.

The syntax-highlighting code-editors (Figure 1, left)
highlight syntax errors. The input and output of each
shader stage can be inspected in real-time to ease
debugging. Runtime errors and uniform property modifiers
(Figure 1, right) allow the developer to experiment with
parameters. All uniforms can be manipulated in real-time
and texture sampler data can be provided using
WebSockets. The arrangement and device profile can be
configured within the IDE or provided via WebSockets.

1124

Work-in-Progress

PIXEL ACTUATION ARRANGEMENT

A wN R S wnN R

— -

} Qurew proa

fe1eQJ0| 0D agJd|dwes wJojLun
} Quriew pLoa

‘ejeqyidsp arJa|dwes waojLun

‘07652 / [zrpJoodbedadL]ereayirdsp = 1ybLeHbead7ps

0T ‘0°952 / [Zz'pJ4o0odbeuadL]e1eadO[0D)HyI3A = JO|0D|3XLd PS

NOoOvihAWN R

(xpL

— < c
(o=
0 —h< Bt
o — o Q —h
oo o
me N Ele
=S5 ot o=
© o) |
Q =0 S <
nao ~ O
o X 3 “n
[} o N
S ~
o] [N
—h o
== +
o o o
< O rt Pl
m 3 N [l
0~/ wn
wn o -
~Oo
0 o t
o 3w
o ax
S m
QX n
+ X
[a]
o
o
=]
o
<

(ov9
(A-sadeaep ‘0°0 ‘070
fAX uoLanosayL / Ax*puaoodbeddL = adedsAlLunuL Zoo9A

fadedsAaLunuL =

Figure 5: Example Application:
using depth data. The geometry
shader maps the actuator

arrangement to the Kinect space,

the actuation shader uses the

depth values and the pixel shader

maps the image colors.

Implementation

SDSL is implemented in Ruby, including the IDE, using
the Opal Ruby-to-Javascript compiler. SDSL code is
parsed using the Treetop parser generator, compiled to
SDSE using custom code, and uses the Ruby built-in
string expansion to turn SDSE into Ruby code. A runtime
environment, again written in Ruby, supports the
execution of the SDSL pipeline. Using Opal, we can use
this infrastructure in a web-browser.

Example Application: Depth Data as Input
Depth data, as provided by a depth camera (e.g., the
Microsoft Kinect) or as computed from the height profile
of terrain, is often used as shape display input. This depth
data has to be mapped to the individual actuators. SDSL
makes this task straightforward: we implement an
arrangement shader that maps the physical hardware
arrangement, first to the unity, then to the proper
resolution space (Figure 4, left). The arrangement and
pixel shader then sample the depth (and color stream)
and transform it into actuator height and pixel color.

Discussion

We presented a first step towards hardware independent
shape-changing displays. In the following we discuss how
the concept of SDSL can be generalized and what its
limitations are.

Supporting User-Input/Interactivity

The SDSL pipeline supports user-input at every stage
through uniforms. For example, touch input on the
display surface could be provided as 3D vector of the
touch coordinates in space. More complex interaction is
supported through samplers as demonstrated by the
"Depth Data as Input” example.

CHI 2015, Crossings, Seoul, Korea

Non-linear actuation models

Our pipeline can be adapted to other types of
shape-change by extending the shader stages to output
custom data structures, rather than pre-defined data
types. The computer graphics community already uses
such an approach, but applying it generically to
shape-changing displays requires greater understanding of
the requirements. If a display differs significantly from the
linear actuation model we currently focus on, one could
alter the pipeline itself. We implemented SDSL so that
it's easy to implement custom pipelines. By open-sourcing
SDSL, we hope to encourage the community to contribute
new shaders that fulfill their needs.

Adapting to Hardware

Hardware is abstracted via drivers which provide the
actuator arrangement and receive the computed actuator
and pixel data. How the driver bridges between the
hardware and pipeline, depends on the hardware itself and
the runtime environment used to execute the SDSL code.
Our Ruby based runtime environment supports TCP and
WebSocket based |/O, so that the hardware driver is
language agnostic.

Performance

Our SDSL implementation is able to drive all tested
applications and shape-changing hardware in real-time.
Pipeline execution time will increase depending on the
computational complexity of the programs for each shader
stage and linearly with spatial and visual resolution. While
our Ruby-based runtime implementation trades
performance for flexibility, the compiler was designed with
extensibility in mind, so that the runtime can be
implemented in a better performing language.

1125

Work-in-Progress

Limitations

As in graphics, there are scenarios ill-suited to a
shader-based development model, e.g. user-input
validation. Shape-display programming scenarios however,
are centered around the parallel control of many actuators
and thus well suited to a shader-based approach.
Developing in a fixed programming model comes at the
cost of flexibility. SDSL enforces fixed pipeline stages to
enable cross-hardware interoperability. The pipeline can
be changed at the cost of hardware interoperability.

Conclusion

Research into shape-changing displays continues to
investigate new materials and hardware; driving the need
for hardware-independent programming models. We
present SDSL as an initial approach—inspired by mature
graphics pipeline concepts—to foster discussion whilst
simplifying shape-change motion design. We hope that
our open-source implementation, including a simulator
and IDE, will allow the community to share applications
and inspire new ways of thinking about programming
shape-changing displays.

References

[1] Alexander, J., Lucero, A., and Subramanian, S. Tilt
Displays: Designing Display Surfaces with Multi-axis
Tilting and Actuation. MobileHCI '12, ACM (2012),
161-170.

[2] Coelho, M., and Zigelbaum, J. Shape-Changing
Interfaces. Personal and Ubiquitous Computing 15, 2
(2011), 161-173.

[3] Cook, R. L. Shade trees. SIGGRAPH '84, ACM
(New York, NY, USA, 1984), 223-231.

[4] Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and
Ishii, H. Jamming User Interfaces: Programmable
Particle Stiffness and Sensing for Malleable and

(5]

[6]

[7]

(8]

[9]

[10]

[11]

CHI 2015, Crossings, Seoul, Korea

Shape-changing Devices. UIST '12, ACM (2012),
519-528.

Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and
Ishii, H. inFORM: Dynamic Physical Affordances and
Constraints Through Shape and Object Actuation.
UIST '13, ACM (2013), 417-426.

Gray, K., and Corporation, M. Microsoft DirectX 9
programmable graphics pipeline. Developer Series.
Microsoft Press, 2003.

Poupyrev, I., Nashida, T., and Okabe, M. Actuation
and tangible user interfaces: The vaucanson duck,
robots, and shape displays. TEl '07, ACM (2007),
205-212.

Rasmussen, M. K., Pedersen, E. W., Petersen,

M. G., and Hornbak, K. Shape-Changing Interfaces:
A Review of the Design Space and Open Research
Questions. CHI 12, ACM (2012), 735-744.

Rost, R., and Kessenich, J. OpenGL Shading
Language. Graphics programming. Addison-Wesley,
2006.

Roudaut, A., Karnik, A., Lochtefeld, M., and
Subramanian, S. Morphees: Toward High " Shape
Resolution” in Self-actuated Flexible Mobile Devices.
CHI '13, ACM (2013), 593-602.

Vidimce, K., Wang, S.-P., Ragan-Kelley, J., and
Matusik, W. Openfab: A programmable pipeline for
multi-material fabrication. ACM Trans. Graph. 32, 4
(July 2013), 136:1-136:12.

1126

	Introduction
	Related Work
	SDSL
	Pipeline
	Hardware Driver
	Applications and Runtime
	Arrangement Shader
	Actuation Shader
	Pixel Shader

	Language
	Integrated Development Environment (IDE)
	Implementation

	Example Application: Depth Data as Input
	Discussion
	Supporting User-Input/Interactivity
	Non-linear actuation models
	Adapting to Hardware
	Performance
	Limitations

	Conclusion
	References

